Chem. Ber. 106, 826-840 (1973)

Natürlich vorkommende Terpen-Derivate, XX¹⁾

Neue Diterpene aus der Tribus Calendulaceae

Ferdinand Bohlmann*, Guido Weickgenannt und Christa Zdero

Organisch-Chemisches Institut der Technischen Universität Berlin, D-1000 Berlin 12, Straße des 17. Juni 135

Eingegangen am 30. Oktober 1972

Aus verschiedenen Vertretern der Gattungen *Garuleum* und *Osteospermum* werden elf neue Diterpene (4, 12, 13, 17–19, 22, 23, 29, 31 und 33) isoliert und in ihrer Struktur und Konfiguration durch ihre spektroskopischen Daten sowie durch chemische Reaktionen geklärt. Alle Verbindungen sind Derivate des Sandaracopimar-15-en- 8β -ols (2).

Naturally Occuring Terpene Derivatives, XX¹⁾

New Diterpenes from the Tribe Calendulaceae

From different representatives of the genera *Garuleum* and *Osteospermum* eleven new diterpenes (4, 12, 13, 17–19, 22, 23, 29, 31, and 33) have been isolated, their structures and configurations being elucidated by spectroscopical data and chemical reactions. All compounds are derivatives of sandaracopimar-15-en- 8β -ol (2).

Die Gattungen der weitgehend südafrikanischen Tribus *Calendulaceae* enthalten als Inhaltsstoffe in der Regel das weitverbreitete Pentainen 1. Das gilt auch für die Vertreter der Gattung *Osteospermum* und der mit ihr nahe verwandten Gattung *Garuleum*.

Die Wurzelextrakte von *Garuleum bipinnatum* Less. und *G. pinnatifidum* DC. enthalten neben 1 zahlreiche, relativ schwer trennbare Diterpene, deren Strukturen geklärt wurden.

C-[C≡C]₅-CH=CH₂ 1
$$-C-C-C-C-A$$

H H H

Aus beiden Arten isoliert man als Hauptinhaltsstoff das bereits bekannte Sandaracopimar-15-en-8 β -ol (2)²⁾, das gleichzeitig den Grundkörper für alle anderen in diesen Pflanzen vorkommenden Diterpene darstellt. In größerer Menge erhält man ein kristallisiertes Diterpen mit der massenspektroskopisch ermittelten Summenformel C₂₂H₃₆O₄. Das IR-Spektrum und das NMR-Spektrum zeigen, daß die Verbindung offenbar zwei OH-Gruppen und eine *O*-Acetat-Gruppierung enthält. Die NMR-Signale [dd τ 5.70 (J = 10+9 Hz) und d 5.19 (J = 9)]erfordern, daß die Gruppierung A vorliegt.

Die Kopplungen lassen vermuten, daß die beiden O-Funktionen äquatorial an einem 6-Ring stehen. Bei Vorliegen eines Sandaracopimar-15-en-8β-ol-Derivats kommen für die Stellung der O-Funktionen nur die C-Atome 6 und 7 bzw. 11 und 12 in Betracht. Zur Klärung dieser Frage haben wir das Verseifungsprodukt mit Per-

¹⁾ XIX. Mitteil.: F. Bohlmann, C. Zdero und N. Rao, Chem. Ber. 105, 3523 (1972).

²⁾ R. E. Corbett und R. A. J. Smith, J. Chem. Soc. C 1967, 300.

jodat gespalten. Man erhält ein Gemisch von Halbacetalen und Aldehyden, die in Methanol durch Protonenkatalyse zwei epimere cyclische Acetale ergeben sowie in geringer Menge nicht trennbare Aldehydacetale. Die NMR-Daten und die Massenspektren sind nur vereinbar mit den Strukturen 7 und 9 bzw. 10 und 11, so daß dem Naturstoff die Struktur und Konfiguration 4 zukommen muß, was gut mit allen Daten vereinbar ist (siehe Tabellen 1 und 2).

Würden die O-Funktionen des Naturstoffs an C-6 und C-7 stehen, müßte bei der Perjodat-Spaltung ein Ketoaldehyd entstehen.

Die *trans*-Verknüpfung der Ringe B und C folgt aus den NMR-Daten für 7 und 9, denn die Kopplung $J_{9,11}$ ist sehr klein. Bei *cis*-Verknüpfung wäre dagegen, wie Dreiding-Modelle zeigen, eine große Kopplung zu erwarten. Die Zuordnung von 7 und 9 folgt ebenfalls klar aus den NMR-Daten. Bei 7 gerät 1-H in den Deshielding-Bereich der äquatorialen OCH₃-Gruppe, und man beobachtet ein dm bei τ 7.72 (J = 13 Hz), während bei 9 das Vinylproton und das 14 α -H in den Deshielding-Bereich der axialen OCH₃-Gruppe gelangt (dd τ 3.92 bzw. d 7.63). Die gleichen Überlegungen führen zur Zuordnung der Konfiguration für die Aldehyde 10 und 11, die allerdings nur als Gemisch erhalten werden konnten. Unterschiedlich ist hier zusätzlich die Lage der Aldehyd-Protonen; in 11 wird das Aldehyd-H durch den Deshielding-Effekt der OCH₃-Gruppe zu tieferen Feldern verschoben. Auch die Massenspektren von 4 bzw. 5 und 6 sind gut vereinbar mit den Strukturen. Neben der Abspaltung der O-Funktionen ist die Abspaltung von Isopren charakteristisch³⁾.

³⁾ Die Fragmentstrukturen sind lediglich wahrscheinliche Annahmen.

Neben 4 isoliert man ein isomeres Dioxy-acetat, das etwas stärker polar ist als 4. Es zeigt im NMR-Spektrum, daß wiederum eine OH- und eine O-Acetat-Gruppe benachbart stehen müssen [dd τ 4.52 ($J = 9.5 \pm 7$ Hz) und d 6.62 (J = 7)]. Die Alanat-Reduktion liefert ein mit 5 identisches Triol. Somit muß dem Naturstoff die Struktur 12 zu kommen.

Etwas weniger polar als 4 ist eine Verbindung, bei der es sich nach dem IR-(1720 cm⁻¹) und MS-Spektrum um ein Dioxyketon handelt. Ein Singulett bei τ 5.58 (1) läßt vermuten, daß wiederum die O-Funktionen benachbart stehen. Mit Boranat erhält man entsprechend ein Triol mit dd τ 5.66 ($J = 3 \pm 3 \text{ Hz}$) und dd 6.38 ($J = 3\pm 1.2$), was nur mit zwei nachbarständigen OH-Gruppen vereinbar ist. Da nach Modellbetrachtungen wahrscheinlich ist, daß bei der Reduktion eine axiale

OH-Gruppe entsteht, war zu erwarten, daß das erhaltene Triol eventuell an C-11 epimer zu 5 ist. Wir haben daher 4 mit Pyridin/Chromsäure oxidiert und das erhaltene Ketoacetat 14 mit Alanat reduziert. Man erhält so das Triol 16, das jedoch mit dem aus dem Ketodiol nicht identisch ist. Somit bleibt für dieses Triol nur die Konfiguration 15, die durch die beobachtete long range-Kopplung des 12β -H mit dem 143-H bestätigt wird (W-Anordnung!). Dem Keton kommt somit die Struktur 13 zu.

Die am meisten polaren Anteile des Wurzelextraktes enthalten eine sehr schwer lösliche Verbindung der Summenformel $C_{29}H_{40}O_5$, bei der es sich ebenfalls um ein Derivat von 5 handelt, wie aus dem NMR- und MS-Spektrum zu ersehen ist. Ein dd τ 5.60 (J = 10 -9 Hz) und d 5.06 (J = 9) sprechen wiederum für benachbarte äquatoriale O-Funktionen an C-11 und C-12. Im MS-Spektrum findet man als Basis-Peak $C_9H_7O_2^{\oplus}$, was zusammen mit dem UV- und NMR-Spektrum nur mit dem *p*-Hydroxyzimtsäure-Acyl-Kation vereinbar ist. Dem Naturstoff kommt somit die Struktur 17 zu:

(J = 8 Hz)

Die sehr schwer trennbaren unpolaren Anteile des Wurzelextraktes enthalten sieben weitere Diterpene. Neben 2 erhält man nach mehrfacher dünnschichtehromatographischer Trennung ein Hydroxy-acetat und ein Dihydroxy-acetat der Summenformeln C₂₂H₃₆O₃ und C₂₂H₃₆O₄, die ein sehr ähnliches NMR-Spektrum besitzen. Die zweite Substanz zeigt jedoch zusätzlich ein ddd τ 5.50 (J = 10, 10+4 Hz), was auf eine äquatoriale OH-Gruppe hindeutet, die nicht zur O-Acetatgruppe benachbart sein kann. Ein m τ 4.43 bei beiden Acetaten deutet an, daß die O-Acetat-Gruppe jeweils axial angeordnet ist. Eine Entscheidung über die Stellung der O-Funktion war nur möglich durch einige chemische Umwandlungen der beiden Ester. Die Alanat-Reduktion liefert ein Diol bzw. Triol. Das Diol gibt mit Chromsäure in Pyridin ein Hydroxyketon, das mit *p*-Toluolsulfonsäure ein konjugiertes Keton liefert, dessen NMR-Spektrum zusammen mit den übrigen Daten nur mit der Struktur 20 vereinbar ist. Somit muß dem Naturstoff die Struktur und Konfiguration 18 zukommen:

Bemerkenswert ist lediglich die beobachtete long range-Kopplung von 7β -H, obwohl keine W-Anordnung vorliegt. Bei Annahme einer *cis*-Verknüpfung der Ringe B und C wäre eine W-Anordnung mit 9β -H gegeben. Alle anderen Daten sprechen jedoch dafür, daß eine *trans*-Verknüpfung wahrscheinlicher ist. Das Diol **19** ist identisch mit einem aus dem Wurzelextrakt isolierten Diol. – Das zweite Acetat liefert mit Chromsäure in Pyridin ein Ketoacetat, das beim Erhitzen mit *p*-Toluolsulfonsäure in Benzol neben einem konjugierten Enon ein Dienon liefert. Das aus dem Acetat erhaltene Triol, das identisch ist mit einem weiteren Naturstoff, ergibt mit Chromsäure ein Diketon. Die spektroskopischen Daten für diese Ketone sind nur vereinbar mit den Strukturen **26**, **28** und **25**. **24** ergibt mit Alanat ein Triol, dessen Methylsignale klar die *trans*-Verknüpfung der Ringe erkennen lassen, so daß den Naturstoffen die Strukturen und Konfigurationen **22** bzw. **23** zukommen müssen.

Ein Diol der Summenformel $C_{20}H_{34}O_2$, das etwas weniger polar ist als 22, zeigt im NMR-Spektrum wiederum ein ddd bei τ 5.67 (J = 10, 10+4 Hz) sowie ein dm bei τ 7.52 (J = 13). Letzteres ist im entsprechenden Acetat nicht mehr zu beobachten. Diese Daten sprechen für die Strukturen 29 bzw. 30.

Ein weiteres Hydroxy-acetat, das etwas weniger polar ist als **18** und mit diesem isomer ist, zeigt im NMR-Spektrum ein dd bei τ 5.23 (J = 10+5.5 Hz). Es handelt sich also um ein Acetat, dessen O-Acetat-Gruppe äquatorial angeordnet ist mit einem quartären C-Atom als Nachbarn. Mit Alanat erhält man ein kristallisiertes Diol. Alle Daten sind nur vereinbar mit der Struktur **31** bzw. **32**.

[≸]Ĥ **29** H

30

2, 4 und 12 haben wir auch aus Osteospermum-Arten isoliert. Die Wurzeln von Osteospermum fruticosum enthalten daneben ein weiteres Diol, das eine primäre OH-Gruppe besitzt [NMR: d (br) τ 6.02 und d (br) 6.40 (J = 11.5 Hz)]. Mit Acetanhydrid erhält man ein Monoacetat [d (br) τ 5.64 und d (br) 5.19 (J = 12)]. Die 10-Methylgruppe zeigt im Alkohol ein s τ 8.98 und im Acetat s 9.09. Das spricht für eine 4 β -CH₂OH-Gruppe, wenn man die systematischen NMR-Untersuchungen an zahlreichen derartigen Verbindungen zu Grunde legt⁴). Für das Diol ist daher die Struktur 33 am wahrscheinlichsten:

Derartige Diterpene sind offenbar charakteristisch für die nahe verwandten Gattungen *Garuleum* und *Osteospermum*. Weitere Untersuchungen müssen zeigen, ob sie eventuell für die ganze Tribus typisch sind.

Diskussion der NMR-Spektren und der Konformationen

In Tab. 1 sind die NMR-Signale der Methyl- und Vinylprotonen der untersuchten Diterpene zusammengestellt. Die Lage der Methylsinguletts erlaubt in den meisten Fällen eine eindeutige Zuordnung, wenn man die zu erwartenden Deshielding-Effekte zur Differenzierung der jeweils vier Methylgruppen heranzieht. Die beobachtete Lage für die 4-Methylgruppen läßt vermuten, daß der Ring A in einer Twist-Form vorliegt, um der starken sterischen Behinderung der in der Sessel-Konformation vorliegenden 1,3-diaxialen Stellung der 4 β - und 10 β -Methylgruppen auszuweichen. Der offensichtlich vorhandene starke Deshielding-Effekt der 6 β -OH-Gruppe auf die 4 β -Methylgruppe im Triol 23 läßt vermuten, daß die folgende Konformation in den Sandaracopimar-15-en-8 β -olen vorliegt:

⁴⁾ A. Gaudemer, J. Polonsky und E. Wenkert, Bull. Soc. Chim. France 1964, 407.

Möglicherweise liegt jedoch auch der Ring C nicht immer in einer reinen Sesselform vor. Dafür sprechen die beobachteten variierenden diaxialen Kopplungen zwischen den 11 β - und 12 α -H-Atomen bei den Diterpenen 3, 5 und 12 sowie die relativ geringe Verschiebung zu tieferen Feldern bei Vorhandensein einer 11β-OH-Gruppe (15, 16 und 27). Da jedoch in 5 und 12 die Signale der 13-Methylgruppen im Vergleich zu denen der Diterpene ohne 12β-OH-Gruppen kaum zu tieferen Feldern verschoben sind, muß z.T. eine weitgehende Sesselform vorliegen (siehe Tab. 2).

	4α-CH ₃	4β-CH ₃	10-CH3	13-CH ₃	15-H ^{a)}	16-Н ^{а)} с	16-H ^{a)} t	
2*	9.15	9.15	9.00	8.78	4.27	5.23	5.18	
3*	9.17	9.15	9.05	8.99	4.36	5.24	5.21	
4	9.11	9.11	8.80	8.66	4.33	5.07	5.06	
5	9.12 9.13	9.12 9.13	8.80 8.84	8.72 8.78	4.25 4.23	4.255.004.235.07		
6*	9.13	9.13	8.92	8.96	3.78	5.08	5.05	
7*	9.12	9.12	8.89	8.73	4.38ъ)	5.05	5.12	
9*	9.16	9.14	8.95	8.95	3.92 ь)	5.05	5.09	
10 *	9.13	9.10	8.57	8.78	4.16	5.11	5.16	
12	9.14 9.15	9.12 9.15	8.89 8.93	8.73 8.81	4.17 4.20	5.04 5.14	5.03 5.11 *	
13	9.15	9.12	8.82	8.71	4.26 ^{b)}	4.94	4.97	
14	9.14	9.14	8.75	8.61	4.23	5.01	5.02	
15	9.11	9.09	8.58	8.58	4.22	4.87	4.99	
16	9.13	9.11	8.59	8.66	4.27	5,00	4.98	
17	9.12	9.10	8.79	4.59	4.29	5.06	5.08	
18 *	9.04	9.02	8.84	8.73	4.35	5.26	5.21	
19	9.03	8.77	8.69	8.77	4.26	5.17	5.13	
20	9.09	9.01	8.88	8.75	4.16	5.06	5.04	
21	9.02	8.94	8.68	8.73	4.22	5.11	5.08	
22	9.03	8.97	8.50	8.72	4.25	5.15	5.13	
23	9.02	8.74	8.48	8.72	4.25	5.16	5.1 2	
24	9.04	8.98	8.30	8.76	4.23	5.11	5.10	
25	9.06	8.73	8.65	8.73	4.20	5.04	5.05	
26	9.02	8.97	8.47	8.92	4.30	5.06	5.12	
27	9.04	8.75	8.35	8.60	4.30	5.18	5.16	
28	9.05	9.02	8.74	8.93	4.20	5.05	5.08	
29	9.13	9.13	8.82	8.74	4.27	5.19	5.14	
30 *	9.13	9.13	8.94	8.70	4.33	5.25	5.19	
31	9.15	9.12	9.00	8.69	4.33	5.10	5.08	
32	9.14	9.12	8.98	8.74	4.28	4.96	4.95	
33	9.10		8.98	8.75	4.27	5.19	5.19	
34	9.11		9.09	8.76	4.26	5.20	5.15	

Tab. 1. NMR-Signale der untersuchten Diterpene in CDCH₃ bzw. CCl₄* (**\tau-Werte**, TMS als innerer Standard)

a) $J_{14,15} = 17 - 17.5$ bzw. 10-10.5 Hz. b) Nicht voll 1. Ordnung.

Zur Frage der Ringverknüpfung der Ringe B und C in den untersuchten Diterpenen ist die Lage der Signale für die 11 β -H-Atome interessant. Das axiale 11-H-Signal in 5, 22, 23 und 29 liegt stets bei τ ca. 5.6, während das axiale 12-H-Signal bei τ ca. 6.6 t liegt. Das wird am besten durch den Deshielding-Effekt der 8 β -OH-Gruppen erklärt, der jedoch nur bei einer *trans*-Verknüpfung der Ringe B und C möglich ist. Daraus folgt, daß die Konfiguration in 5, 23 und 29 gleich sein muß. Für 5 ist jedoch die B/C-*trans*-Verknüpfung durch den Abbau zu 7 und 9 ebenso wie für 22 bzw. 23 durch die Lage des 10-Methylsinguletts im NMR-Spektrum von 27 gesichert, so daß die Annahme, daß in allen untersuchten Diterpenen die Ringe *trans*-verknüpft sind, sehr wahrscheinlich ist.

	1β-H	11α-H	11β - Η	12 a- H	12β-Н	Weitere Signale		
3						7β-H dm 7.05a) 14β-H dd 7.33b)		
4	dm 7.41 ª)	-	dd 5.70e)	d 5.19°)				
5	dm 7.46 ^{a)}	_	dd 5.84c)	d 6.70°)				
12		_	dd 4.52 ^d)	d 6.62 ^{d)}				
13	dm 7.46 ^{a)}	_		-	s 5.58	9α-H s 7.72; 14α-H d 7.86 (J = 15)		
14	dm 7.40ª)	-		s 4.96		9a-H s 7.75		
15		dd 5.66 ^{e)}			dd 6.38£)			
16		dd 5.621)		d 6.70 ^{f)}	_			
17	dm 7.41 a)		dd 5.60°)	d 5.06°)				
29	dm 7.52 a)	_	ddd 5.67 ^{g)}					
30			ddd 4.57 ^{g)}					
31				dd 5.23 h)				
32				dd 6.51 ⁿ⁾				

Tab. 2.	Weitere	charakteristische	NMR-Signale	der	Diterpene	3-5,	12-17	und	2930
$(\tau$ -Werte, J in Hz)									

a) J = 13, b) $J_{gem} = 14.5$, $J_{12,14} = 2$, c) $J_{9,11} = 10$, $J_{11,12} = 9$, d) $J_{9,11} = 9$, $J_{11,12} = 7$ c) $J_{9,11} = J_{11,12} = 3$, f) $J_{12,14} = 1.2$, g) $J_{9,11} = J_{11,123} = 10$, $J_{11,12\beta} = 4$. h) $J_{11\beta,123} = 10$, $J_{11\alpha,12\beta} = 5$, i) $J_{9,11} = 2.2$, $J_{11,12} = 3.2$.

Bemerkenswert ist der unterschiedliche Deshielding-Effekt der 11 α -OH- und 11 α -Acetoxy-Gruppen auf das 1-H-Atom. Nur die OH-Gruppe ist wirksam, während die O-Acetat-Gruppe offenbar aus sterischen Gründen vom 1-H-Atom weggerichtet vorliegt, denn bei 3 wurden die Signale der 7 β - und 14 β -H-Atome deutlich durch die 8 β -O-Acetat-Gruppe zu tieferen Feldern verschoben [dm τ 7.05 (J = 13 Hz) und dd 7.33 (J = 14.5+2)].

Relativ schwierig ist die Frage der Konformation der Diterpene 20, 24, 25, 26 und 28 zu beantworten. Die NMR-Signale sind hier nur zum Teil klar zuzuordnen. Bemerkenswert ist die tiefe Lage des 10-Methylsignals in 24. Die Methylgruppe liegt zwar im Deshielding-Bereich der 6β -Acetoxy- und 8β -OH-Gruppen, das ist aber auch bei 18 der Fall. Wahrscheinlich liegt in **24** eine Konformation vor, bei der die 10-Methylgruppe in den Deshielding-Bereich der 11-Ketogruppe gelangt. Wir haben versucht, durch Anwendung von Eu(fod)₃ (Europium-Komplex des *tert*-Butyl-[(heptafluorbutyryl)methyl]-ketons) als shift-Reagenz weitere Klarheit zu schaffen. In den meisten Fällen werden jedoch die Spektren nicht besser interpretierbar.

Der Deutschen Forschungsgemeinschaft und dem ERP-Sondervermögen danken wir für die Förderung der Arbeit, dem National Botanical Garden Kirstenbosch und seinen Mitarbeitern für die Hilfe bei der Suche und Bestimmung des Pflanzenmaterials.

Experimenteller Teil

Die UV-Spektren in Äther wurden im Beckman DK 1, die IR-Spektren in CCl₄ bzw. CHCl₃ im Beckman IR 9, die NMR-Spektren in CDCl₃ bzw. CCl₄ im Varian HA 100 (TMS als innerer Standard, τ -Werte) und die Massenspektren im MS 9 der Firma AEI oder im CH 7 der Firma Varian MAT (Direkteinlaß, Temp. 80–140°) aufgenommen. Die Drehungen in CHCl₃ bzw. CH₃OH wurden im Perkin-Elmer-Polarimeter bestimmt. Die Schmpp. sind unkorrigiert (Leitz-Heiztischmikroskop). Die Analysen verdanken wir unserer mikroanalytischen Abteilung unter Leitung von Frau Dr. U. Faass. Für die Chromatographie verwandte man Al₂O₃ (Akt.-St. II, schwach sauer) und für die Dünnschichtchromatographie (DC) SiO₂ PF 254 und Äther/Petroläther (Sdp. 50–60°)-Gemische (=Ä/PÄ) als Laufmittel. Alle Substanzen wurden aus Äther/Petroläther kristallisiert. Die frisch zerkleinerten Pflanzenteile extrahierte man bei 25° mit Äther.

Isolierung der Inhaltsstoffe aus Garuleum pinnatifidum DC.: Den Extrakt aus 110 g Wurzeln chromatographierte man zunächst grob an der Säule und trennte die erhaltenen Fraktionen unterschiedlicher Polarität durch DC. Mit Petroläther eluierte man von der Säule 3 mg 1. Die mit $\ddot{A}/P\ddot{A}$ (1:10) eluierten Anteile ergaben nach DC 300 mg 2²⁾ und 10 mg 31. Die mit $\ddot{A}/P\ddot{A}$ (1:2) erhaltenen Fraktionen ergaben nach DC 170 mg 18, während durch DC der mit $\ddot{A}/P\ddot{A}$ (1:2) erhaltenen Fraktionen 105 mg 29, 20 mg 19 und 120 mg 14 isoliert wurden. Die mit $\ddot{A}/P\ddot{A}$ (1:1) erhaltenen Fraktionen ergaben nach DC 300 mg 4, 120 mg 12 und 10 mg 13, während das Äther-Eluat 10 mg 17 lieferte.

Isolierung der Inhaltsstoffe aus Garuleum bipinnatum Less.: Der Extrakt aus 200 g Wurzeln ergab, wie oben aufgetrennt, Spuren 1, 200 mg 2, 10 mg 31, 100 mg 18, 50 mg 29, 20 mg 19, 60 mg 22, 20 mg 23, 160 mg 4, 100 mg 12, 50 mg 13 und 60 mg 17. Der Extrakt aus 50 g oberirdischen Teilen lieferte analog 15 mg 2, 15 mg 18, 5 mg 29, 5 mg 22, 20 mg 4 und 3 mg 12.

Isolierung der Inhaltsstoffe aus Osteospermum-Arten: Der Extrakt aus 100 g Wurzeln von O. fruticosum (L.) Norl. ergab, wie oben aufgetrennt, 5 mg 1, 50 mg 2 und 50 mg 33, der von O. junceum Berg. (250 g Wurzeln) 1 mg 1, 20 mg 2, 40 mg 4 und 80 mg 12, der von O. oppositifolium (Ait.) Norl. (50 g Wurzeln) 0.3 mg 1, 10 mg 4 und 20 mg 12. O. ciliatum Berg. (50 g Wurzeln) ergaben 0.1 mg 1, O. tomentosum (200 g Wurzeln) 0.1 mg 1, O. amplectens (Harv.) Norl. (40 g Wurzeln) Spuren 1 und O. sinuatum Norl. (20 g Wurzeln) 0.3 mg 1. Die vier letzten Extrakte wurden nicht auf Diterpene untersucht.

Sandaracopimar-15-en-8 β -yl-acetat (3): 40 mg 2 in 5 ml Isopropenylacetat ließ man unter Zusatz von 60 mg *p*-Toluolsulfonsäure 5 d bei 25° stehen. Anschließend nahm man in Äther auf, wusch neutral und reinigte den Eindampfungsrückstand durch DC (Ä/PÄ 1:10). Man erhielt 34 mg 3, farbloses Öl. – IR: OAc 1740, 1250; CH=CH₂ 920 cm⁻¹. – MS: M⁺ m/e 332.270 (0.1%) (ber. für C₂₂H₃₆O₂ 332.270); – AcOH 272(23); 272 – CH₃ 257 (12); H₃CCO[⊕] 43 (100). 12 β -Acetoxysandaracopimar-15-en-8 β ,11 α -diol (4): Farblose Kristalle, Schmp. 137 bis 138°. – IR: OH 3480; OAc 1725, 1265; CH=CH₂ 1645, 920 cm⁻¹ (in KBr).

$$\begin{bmatrix} \alpha \end{bmatrix}_{24^{\circ}}^{\lambda} = \frac{589}{+6.0} \frac{578}{+6.4} \frac{546}{+7.3} \frac{436}{+12.3} \frac{365 \text{ nm}}{+19.2^{\circ}} \quad (c = 2.5 \text{ in CH}_{3}\text{OH}) \\ C_{22}\text{H}_{36}\text{O}_{4} \quad (364.5) \quad \text{Ber. C } 72.49 \text{ H } 9.96 \quad \text{Gef. C } 71.98 \text{ H } 9.90$$

Sandaracopimar-15-en-8 β , 1/a, 12 β -triol (5): 30 mg 4 in 5 ml absol. Äther versetzte man mit 50 mg LiAlH₄. Nach 5 min zersetzte man den Überschuß mit verd. Schwefelsäure und nahm in Äther auf. Der Eindampfrückstand wurde umkristallisiert, farblose Kristalle, Schmp. 142°, Ausb. 80%. – IR: OH 3620, 3460; CH=CH₂ 3100, 1644, 926 cm⁻¹.

C₂₀H₃₄O₃ (322.5) Ber. C 74.49 H 10.63 Gef. C 74.11 H 10.82

12β-Acetoxy-8β-hydroxysandaracopimar-15-en-11-on (14): 50 mg 4 in 2 ml absol. Pyridin versetzte man unter Rühren bei 0° mit 170 mg CrO₃ in 3 ml absol. Pyridin. Nach 15stdg. Rühren bei 25° versetzte man mit Äther und Wasser, wusch neutral und reinigte den Eindampfrückstand durch Kristallisation, farblose Kristalle, Schmp. 151°, Ausb. 70%. – IR: OH 3640, 3620, 3500; CH=CH₂ 3100, 1645, 923; OAc 1745, 1250; C=O 1730 cm⁻¹. – MS: M⁺ m/e 362 (12); – H₂O 344 (2); – H₂C=C=O 320 (2); – AcOH 302 (22); 344 – CH₃ 329 (2); 320 – Isopren 252 (100); 302 – CH₃ 287 (13); 302 – H₂O 284 (5); 287 – Isopren 221 (48).

$$[\alpha]_{24^{\circ}}^{\lambda} = \frac{589}{-18} \frac{578}{-18.5} \frac{546}{-21} \frac{436 \text{ nm}}{-31^{\circ}} \quad (c = 1.75 \text{ in CHCl}_3)$$

$$C_{22}H_{34}O_4 \quad (362.5) \quad \text{Ber. C } 72.89 \quad \text{H } 9.46 \quad \text{Gcf. C } 72.48 \quad \text{H } 9.68$$

Sandaracopimar-15-en-8 β ,11 β ,12 β -triol (16): 20 mg 14 in 3 ml absol. Äther versetzte man mit 30 mg LiAlH₄. Nach 5 min zersetzte man mit verd. Schwefelsäure und erhielt nach Aufarbeitung (s. o.) farblose Kristalle, Schmp. 229°, Ausb. 78%. – IR: OH 3300; CH=CH₂ 1642, 925 cm⁻¹. – MS: M⁺ m/e 322 (6); – H₂O 304 (5); – C₅H₉ 253 (13); 304 – CH₃ 289 (3); 304 – H₂O 286 (3); 253 – CH₂O 223 (100).

C₂₀H₃₄O₃ (322.5) Ber. C 74.49 H 10.63 Gef. C 74.27 H 10.72

Abbau von 5: 85 mg 5 in 5 ml Dioxan rührte man mit 100 mg Natriumperjodat in 1 ml $2 \text{ N } H_2\text{SO}_4$ 1 h bei 25°. Anschließend versetzte man mit Wasser und nahm in Äther auf. Den Eindampfrückstand trennte man durch DC (Ä/PÄ 1:1) und erhielt in ca. 75proz. Ausb. ein Gemisch von 6 und 8, das ohne Trennung in 5 ml absol. Methanol mit 5 mg *p*-Toluolsulfonsäure 10 min auf 60° erwärmt wurde. Nach Zugabe von Wasser nahm man in Äther auf, trennte den Eindampfrückstand durch DC (Ä/PÄ 1:6) und erhielt in einer Gesamtausb. von 85% im Verhältnis von ca. 3:1:3 9, 7 und das Gemisch von 10 und 11 (nach NMR 4:1), das nicht trennbar war.

7: Farblose Kristalle, Schmp. 82-84°.

$$[\alpha]_{24^{\circ}}^{\lambda} = \frac{589}{-35} \frac{578}{-37} \frac{546}{-41} \frac{436 \text{ nm}}{-68^{\circ}} \quad (c = 1.37 \text{ in CH}_{3}\text{OH})$$

9: Farblose Kristalle, Schmp. $56-58^{\circ}$. - 1R: CH=CH₂ 3090, 1640, 915; -OR 1125 cm⁻¹. - MS: M - OCH₃ 303 (100%); - CO 275 (5); - CHO 274 (5); C₅H₉^{\oplus} 69 (80).

$$[\alpha]_{24^{\circ}}^{\lambda} = \frac{589}{-12} \frac{578}{-12.9} \frac{546}{-13.6} \frac{436}{-20^{\circ}} \text{ m} \qquad (c = 1.8 \text{ in CH}_3\text{OH})$$

C₂₁H₃₄O₃ (334.5) Ber. C 75.40 H 10.25 Gef. C 75.50 H 10.37

10/11: Nicht getrenntes farbloses Öl. – IR: CHO 1715; CH=CH₂ 920 cm⁻¹.

C₂₁H₃₄O₃ (334.5) Ber. C 75.40 H 10.25 Gef. C 75.44 H 10.69

11*a*-Acetoxysandaracopimar-15-en-8 β , 12 β -diol (12): Farblose Kristalle, Schmp. 148°. – IR: OH 3610; CH=CH₂ 1645, 928; OAc 1730, 1268 cm⁻¹. – MS: M⁺ m/e 364 (9); – H₂O 346 (26); – H₂C=C=O 322 (8); – AcOH 304 (24); 346 – CH₃ 331 (10); 304 – H₂O 286 (38); 304 – C₅H₉ 235 (53); 286 – CH₃ 271 (31); 286 – Isopren 218 (100); 271 – H₂O 253 (5); 218 – CH₃ 203 (27).

$$[\alpha]_{2_{4}\circ}^{\lambda} = \frac{589}{-6.9} \frac{578}{-7.0} \frac{546}{-7.95} \frac{436}{-13.6} \frac{365 \text{ nm}}{-23^{\circ}} \quad (c = 0.59)$$

$$C_{22}H_{36}O_4 \quad (364.5) \quad \text{Ber. } C \ 72.49 \quad \text{H} \ 9.96 \quad \text{Gcf. } C \ 72.27 \quad \text{H} \ 9.91$$

30 mg 12 in 5 ml absol. Äther versetzte man mit 50 mg LiAlH₄. Nach 5 min wurde aufgearbeitet (s.o.). Farblose Kristalle, Schmp. 142°, 5, Ausb. 80%, identisch mit dem aus 4 erhaltenen Triol.

 8β , 12a-Dihydroxysandaracopimar-15-en-11-on (13): Farblose Kristalle, Schmp. 179.5°. ... IR: OH 3480; C=O 1720; CH=CH₂ 3090, 915 cm⁻¹. - MS: M⁺ m/e 320 (3); - H₂O 302 (5); - Isopren 252 (100); 302 - CH₃ 287 (5.5); 302 - H₂O 284 (1.5); 252 - H₂O 234 (2.3); 252 - CH₂OH 221 (6).

C20H32O3 (320.5) Ber. C 74.95 H 10.07 Gef. C 74.85 H 10.30

Sandaracopimar-15-en-8 β ,11 β ,12 α -triol (15): 20 mg 13 in 3 ml Methanol versetzte man mit 20 mg NaBH₄. Nach 10 min zersetzte man mit verd. Schwefelsäure und nahm in Äther auf. Der Eindampfrückstand ergab nach Umkristallisation in 75 proz. Ausb. 15, farblose Kristalle, Schmp. 221°. – 1R: OH 3620; CH=CH₂ 1645, 920 cm⁻¹. – MS: M⁺ m/e 322 (1); – H₂O 304 (3); 304 – CH₃ 289 (1); 304 – H₂O 286 (2); 304 – C₅H₉ 235 (5); C₅H₉[©] 69 (100).

 $C_{20}H_{34}O_3$ (322.5) Ber. C 74.49 H 10.63 Gef. C 74.21 H 10.75

 12β -(p-Hydroxycinnamoyloxy)sandaracopimar-15-en-8 β ,11a-diol (17): Farblose Kristalle, Schmp. 216°. – IR: OH 3430; CH=CH₂ 920; PhCH=CHCO₂R 1695, 1605, 1505 cm⁻¹.

$$[\alpha]_{24^{\circ}}^{\lambda} = \frac{\frac{589}{+48.3} + \frac{578}{+51.2} + \frac{546}{+60.0} + \frac{436}{+128^{\circ}}}{C_{29}H_{40}O_5} (c = 0.58, C_2H_5OH)$$

$$C_{29}H_{40}O_5 (468.6) \text{ Ber. C } 74.32 \text{ H } 8.61 \text{ Gef. C } 73.97 \text{ H } 8.69$$

6β-Acetoxysandaracopimar-15-en-8β-ol (18): Farblose Kristalle, Schmp. 156.5°. – IR: OH 3620; CH = CH₂ 3085, 1650; 915; OAc 1750, 1232 cm⁻¹. – MS: M⁺ m/e 348 (0.5); – AcOH 288 – CH₃ 273 (20); 288 – H₂O 270 (52); 270 – CH₃ 255 (21); CH₃CO^Φ 43 (100). $[\alpha]_{2}^{H^{0}}$: -3.0° (c = 2.36 in CH₃OH).

C₂₂H₃₆O₃ (348.5) Ber. C 75.82 H 10.42 Gef. C 75.47 H 10.60

Sandaracopimar-15-en-6 β ,8 β -diol (19): 20 mg 18 überführte man mit LiAlH₄ in das Diol (s. bei 16) und erhielt in 75 proz. Ausb. farblose Kristalle, Schmp. 137°, identisch mit natürlichem 19. – IR: OH 3550, 3420; CH=CH₂ 3090, 1642, 920 cm⁻¹. – MS: M⁺ m/e 306 (3); – CH₃ 291 (22); – H₂O 288 (26); 288 – CH₃ 273 (12); 288 – H₂O 270 (100); 270 – CH₃ 255 (20).

$$[\alpha]_{24^{\circ}}^{\lambda} = \frac{589}{-22.9} \frac{578}{-23} \frac{546}{-26.4} - \frac{436}{-42.6} \frac{-365}{-62^{\circ}} \quad (c = 0.7 \text{ in CHCl}_3)$$

C₂₀H₃₄O₂ (306.5) Ber. C 78.37 H 11.18 Gef. C 78.11 H 11.27

 $\delta\beta$ -Hydroxy-sandaracopimar-15-en-6-on (21): 50 mg 19 in 2 ml Pyridin versetzte man unter Rühren bei 0° mit 170 mg CrO₃ in 3 ml Pyridin. Nach 15stdg. Rühren bei 25° wurde wie bei 14 aufgearbeitet. Ausb. 65%, farblose Kristalle, Schmp. 161–162°. – IR: OH 3610; CH=CH₂ 3090, 1640, 920; C=O 1708 cm⁻¹. – MS: M⁺ m/e 304.241 (13) (ber. für C₂₀H₃₂O₂ 304.240); – CH₃ 289 (5); – H₂O 286 (7); 289 – Isopren 221 (6); C₅H₉[⊕] 69 (100). Sandaracopimar-7,15-dien-6-on (20): 20 mg 21 in 5 ml Benzol erhitzte man mit 50 mg p-Toluolsulfonsäure 30 min zum Sieden. Die neutralgewaschene eingedampfte Lösung ergab nach DC (Ä/PÄ 1:3) in 60 proz. Ausb. 20 als farbloses Öl. – UV: $\lambda_{max} = 235$ nm ($\epsilon = 12800$). – IR: CH=CH₂ 3090, 930; C=C-C=O 1686, 1648 cm⁻¹. – MS: M+ m/e 286.230 (65) (ber. für C₂₀H₃₀O 286.230); – CH₃ 271 (28); – CO 258 (5); – CHO 257 (6); – C₉H₁₆ 162 (81); 271 – Isopren 203 (100); 162 – CH₃ 147 (95); 162 – CO 134 (80); 134 – CH₃ 119 (53).

 6β -Acetoxysandaracopimar-15-en-8 β ,11 α -diol (22): Farblose Kristalle, Schmp. 169–170°. --IR: OH 3500; CH=CH₂ 3080, 1640, 915; OAc 1715, 1285 cm⁻¹ (in KBr). -- MS: M⁺ m/e 364 (1); -- H₂O 346 (32); -- AcOH 304 (15); 346 -- AcOH 286 (100); 286 -- CH₃ 271 (41).

$$[\alpha]_{24^{\circ}}^{\lambda} = \frac{589}{-29.4} \frac{578}{-30.4} \frac{546}{-36.3} \frac{436}{-55.9} \frac{365}{-82^{\circ}} \text{ m} \quad (c = 2.0 \text{ in CH}_{3}\text{OH})$$

$$C_{22}\text{H}_{36}\text{O}_{4} \text{ (364.5)} \text{ Ber. C 72.49 H 9.96 Gef. C 72.20 H 9.87}$$

Sandaracopimar-15-en-6 β ,8 β ,11a-triol (23): 20 mg 22 überführte man wie bei 16 mit LiAlH₄ in das Triol 23, Ausb. 85%. Farblose Kristalle, Schmp. 164°, identisch mit natürlichem 23. – IR: OH 3610, 3490; CH=CH₂ 3090, 1643, 925 cm⁻¹. – MS: M⁺ m/e 322 (3); – H₂O 304 (31); 304 – CH₃ 289 (15); 304 – H₂O 286 (26); 286 – CH₃ 271 (12); C₅H₉[©] 69 (100).

C₂₀H₃₄O₃ (322.5) Ber. C 74.49 H 10.63 Gcf. C 74.05 H 10.84

 6β -Acetoxy- 8β -hydroxysandaracopimar-15-en-11-on (24): 50 mg 22 oxidierte man mit Pyridin/Chromsäure (s. bei 14) und erhielt in 68 proz. Ausb. farblose Kristalle, Schmp. 174°. – IR: OH 3610; CH=CH₂ 1642, 930; OAc 1745; C=O 1720 cm⁻¹. – MS: M⁺ m/e362.246 (3) (ber. für C₂₂H₃₄O₄ 362.246); – AcOH 302 (3.5); 302 – H₂O 284 (6); 302 – Isopren 234 (7); 284 – CH₃ 269 (2); C₅H₉[⊕] 69 (100).

 6β -Acetoxysandaracopimar-8,15-dien-11-on (26) und Sandaracopimar-6,8,15-trien-11-on (28): 25 mg 24 in 5 ml Benzol erhitzte man mit 50 mg p-Toluolsulfonsäure 30 min zum Sieden. Die Reaktionsprodukte trennte man durch DC (Ä/PÄ 1:3) und erhielt 8 mg 28 sowie 10 mg 26.

26: Farbloses Öl, Sdp. 150°/0.1 Torr. – IR: CH – CH₂ 3090, 930; OAc 1747, 1255; C=C-C=O 1677, 1630 cm⁻¹. – UV: $\lambda_{max} = 240$ nm ($\varepsilon = 7200$). – MS: M⁺ m/e 344.234 (0.5) (ber. für C₂₂H₃₂O₃ 344.235); – CH₃ 329 (0.3); – AcOH 284 (96); 284 – CH₃ 269 (52); 269 – Isopren 201 (100).

28: Farbloses Öl, Sdp. 120°/0.1 Torr. – IR: CH=CH₂ 3100, 925; [C=-C]₂-C=O 1671 cm⁻¹. – UV: $\lambda_{max} = 297 \text{ nm}$ ($\epsilon = 4000$). – MS: M⁺ m/e 284.213 (85) (ber. für C₂₀H₂₈O 284.214); – CH₃ 269 (77); 269 – Isopren 201 (74); C₄H₇[⊕] 55 (100).

Sandaracopimar-15-en-6 β ,8 β ,11 β -triol (27): 15 mg 24 reduzierte man mit LiAlH₄ (s. bei 16) und erhielt in 72 proz. Ausb. 27, farblose Kristalle, Schmp. 203-204°. – IR: OH 3500, 3330; CH=CH₂ 3090, 1640, 920 cm⁻¹.

C₂₀H₃₄O₃ (322.5) Ber. C 74.49 H 10.63 Gef. C 74.31 H 10.74

8β-Hydroxysandaracopimar-15-en-6,11-dion (25): 10 mg 23 oxidierte man mit Pyridin/ Chromsäure (s. bei 14) und erhielt in 58 proz. Ausb. 25, farblose Kristalle, Schmp. 221°. – IR: OH 3613; CH=CH₂ 3100, 1645, 925; C=O 1720 cm⁻¹. – MS: M⁺ m/e 318.219 (16) (ber. für C₂₀H₃₀O₃ 318.219); – H₂O 300 (5); C₅H₉[®] 69 (100).

Chemische Berichte Jahrg. 106

Sandaracopimar-15-en-8 β ,11 α -diol (29): Farblose Kristalle, Schmp. 153–154°. – IR (KBr): OH 3565, 3370; CH=CH₂ 3090, 1645, 915 cm⁻¹. – MS: M⁺ m/e 306 (5); – H₂O 288 (100); 288 – CH₃ 273 (39); 288 – H₂O 270 (30); 270 – CH₃ 255 (33); 246 (38).

$$\left[\alpha\right]_{24^{\circ}}^{\lambda} = \frac{\frac{589}{-19.1} \frac{578}{-19.9} \frac{546}{-22.6} \frac{436}{-46.5} \frac{365}{-66^{\circ}} \text{ (}c = 2.65 \text{ in CH}_{3}\text{OH}\text{)}$$

C₂₀H₃₄O₂ (306.5) Ber. C 78.37 H 11.18 Gef. C 78.15 H 11.04

11α-Acetoxysandaracopimar-15-en-8β-ol (30): 25 mg 29 crwärmte man in 3 ml Acetanhydrid und 0.1 ml Acetylchlorid 2 h auf 50 –60°. Nach DC (Ä/PÄ 2:3) erhielt man in 90 proz. Ausb. farblose Kristalle, Schmp. 151°. – 1R: OH 3610; CH=CH₂ 3090, 1640, 915; OAc 1740, 1250 cm⁻¹. – MS: M⁺ m/e 348.267 (4) (ber. für C₂₂H₃₆O₃ 348.266); – H₂O 330 (5); – AcOH 288 (28); 330 – CH₃ 315 (4); 288 – H₂O 270 (100); 288 – Isopren 220 (24); 270; 270 – CH₃ 255 (40).

 12β -Acetoxysandaracopimar-15-en-8 β -ol (31): Farbloses Öl. — IR: OH 3620, 3300; CH=CH₂ 3100, 1645, 925; OAc 1746, 1250 cm⁻¹. — MS: M⁺ m/e 348.266 (0.2) (ber. für C₂₂H₃₆O₃ 348.266), — AcOH 288 (2.5); 288 — CH₃ 273 (2.9); 288 — H₂O 270 (0.6); 288 — Isopren 220 (1); CH₃CO^G 43 (100).

Sandaracopimar-15-en-8 β ,12 β -diol (32): 20 mg 31 überführte man mit LiAlH₄ wie bei 16 in das Diol, farblose Kristalle, Schmp. 177–178°, Ausb. 85%. – IR: OH 3620, 3300; CH=CH₂ 3090, 1640, 925 cm⁻¹. – MS: M⁺m/e 306.259 (1%) (ber. für C₂₀H₃₄O₂ 306.259); – H₂O 288 (13); – C₅H₉ 237 (20); 288 – CH₃ 273 (32); C₅H₉ \odot 69 (100).

Sandaracopimar-15-en-8 β ,18-diol (33): Farblose Kristalle, Schmp. 180°. – IR: OH 3630, 3280; CH=CH₂ 1640, 915 cm⁻¹. – MS: M⁺ m/e 306 (5); – H₂O 288 (29); – CH₂OH 275 (85); 288 – CH₂O 258 (79); 275 – H₂O 257 (60); 258 – CH₃ 243 (36); 257 – Isopren 189 (61); 216 (100).

C20H34O2 (306.5) Ber. C 78.37 H 11.18 Gef. C 78.09 H 11.24

18-Acetoxysandaracopimar-15-en-8β-ol (34): 20 mg 33 erwärmte man 1 h in 3 ml Acetanhydrid auf 60°. Nach DC (Ä/PÄ 1:1) erhielt man in 82 proz. Ausb. ein farbloses Öl. – IR: OH 3610, 3560; CH=CH₂ 3090, 1640, 916; OAc 1740, 1260 cm⁻¹. – MS: M⁺ m/e 348.266 (1%) (ber. für C₂₂H₃₆O₃ 348.266).

[399/72]